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Overview

A plethora of works in computing education have identified the academia-industry gap—the
gap between expectations of new graduates” abilities in the workforce and their skills learned from
undergraduate computer science programs. An eye-opening study in 2018 concluded that “in
spite of nearly two decades since the gap in industry/academic coding experiences was identified
and nearly ten years since researchers made recommendations for curricular changes to address
the gap, it is still quite wide” [10]. There is a notable difference between industry work, which
typically includes adding code to large, existing code bases, and university coursework, which
typically includes writing small, stand-alone programs from scratch. As a result, prior works have
consistently called for students to work on large, existing code bases in university courses [4, 10].

We will address the academia-industry gap by focusing on a specific process of working on
a large code base: program comprehension. Program comprehension accounts for more than
50% of the time to modify or debug part of a large code base [29] and impacts productivity,
communication, and quality of code changes. Despite the importance of program comprehension,
limited work has focused on teaching program comprehension strategies in large code bases [31].
In fact, Tony Clear wrote in an ACM SIGCSE Bulletin in 2005: “Our state of the art seems akin to
studying reading without the key notions of comprehension level or reading age” [8].

The PIs of this proposal have already made progress towards teaching students comprehension
strategies in large code bases. Specifically, the PI designed and taught a course called “Working
with Large Code Bases” in Spring 2023 in which students learned code navigation, code compre-
hension, and code management techniques for large, pre-existing code bases. Using this course as
a starting point, we will conduct a three-phase research plan to 1) identify student struggles related
to program comprehension in a large code base, 2) design a research-based, scalable curriculum
to address those struggles, and 3) evaluate the curriculum on students” program comprehension
strategies and abilities. We will ground our work in relevant theories—the Block Model (a theory
of program comprehension) and Cognitive Apprenticeship (a teaching and learning theory)—to
design a curriculum that imparts effective comprehending strategies in a large code base.
Intellectual Merit

The proposed work will advance our understanding of students” struggles while compre-
hending part of a large code base. These findings will lay the groundwork for future research
to develop and evaluate pedagogical approaches to address these struggles related to program
comprehension strategies in a large code bases—a notable gap in prior work. By grounding
our empirical work to influential theories, we seek to advance our theoretical understanding of
students’” comprehension strategies and how we can use teaching approaches to impact effective
strategies. This theoretical underpinning will help bridge empirical findings to a theoretical basis
in computing education research.

Broader Impacts

Our work will help level the playing field between students who get internships (which
may correlate to prior programming experience before college) and those who are learning
computing for the first time in college by offering the experience of working in a large code
base. Authentic, hands-on learning environments, like the one we aim to develop, are shown to
increase student enthusiasm for computing and persistence in the field, especially for students
from underrepresented groups. Further, since our goal is to significantly scale up the course
size and make our course materials freely-accessible, we hope that anyone interested in learning
strategies for working with large code bases can benefit from our work.
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1 Introduction

Years of research into the academia-industry gap, which describes the gap between industry
expectations and students” abilities, in the software engineering field has revealed deficiencies
in new developers’ ability to adjust to working on a large, pre-existing code base. Interviews
from new developers and managers highlight the difference between the type of work done in
industry—which typically involves developers contributing to a large code base—and academia—
which typically involves students developing their own programs from scratch. The goal of this
proposal is to develop and evaluate a curriculum to address part of the academia-industry gap.
Specifically, this work will focus on program comprehension—the most time consuming process in
a developer’s workflow, yet an under-emphasized learning goal in software engineering courses.

The computing education research field includes a sizable amount of literature on novices’
program comprehension skills [39, 47], including a Working Group at the 2019 ITiCSE conference
[23]. However, the vast majority of these works study novice program comprehension strategies
in small programs that are typically contained to a single file [23, 31, 32, 39, 47]. On the other
hand, a significant body of work focuses on how expert and professional software developers
comprehend their large code bases [37, 45, 54, 65]. Despite these two areas of work, there is little
to no work within computing education research that covers how to teach code comprehension
strategies [31], especially in the context of large code bases.

The impact of limited emphasis on teaching code comprehension in large code bases can
lead to struggles among new developers who did not learn or experience how to comprehend a
large code base. Begel and Simon conducted a months-long observational study of new software
developers at Microsoft and identified several areas of deficiencies, including debugging, testing,
and code comprehension in a large code base [5]. One of the key findings from their work was
that students struggled to manage the complexity of a large system, especially with learning about
all the interconnected parts of the code base [5]. More recently, Craig et al. conducted interviews
with early-career software developers. A common theme that emerged from the interviews was
that the majority of developers had not worked with legacy code bases in college [10]. One
developer remarked: “The biggest difference between school and real life is that everything I
did in college was greenfield and almost nothing since” [10]. A key difference in the process of
working on a project from scratch and the process of working on an existing code base is the
program comprehension step to understand the existing code. As a result, both studies mentioned
above include the same recommendation to universities: explicitly teach students how to work on
a large, pre-existing code base [4, 10].

We propose to fill the gap between the significant body of work to identify new developers’
struggles when starting a software engineering job [4, 10, 42, 43] and the many explicit calls to
action to teach students about working on a large code base [4, 6, 10]. Specifically, our work aims
to 1) identify students’ struggles to comprehend a large code base in terms of the Block Model, 2)
design and scale a curriculum based on the Cognitive Apprenticeship learning theory to address
those student struggles, and 3) evaluate the curriculum on students’ ability to comprehend,
explain, and modify code in a large code base. The first step will be to conduct observations and
think-aloud interviews to identify student struggles as they try to comprehend a large code base.
We will contextualize our findings using the Block Model—a theory of program comprehension
that describes the separate aspects of a program that should be understood. Following this



step, we will leverage key methods of the Cognitive Apprenticeship learning theory (modeling,
scaffolding, coaching, articulation, reflection, and exploration) to redesign our existing course
to address the struggles related to comprehending large code bases. Finally, to evaluate our
curriculum, we will compare students who have taken our course to those who have completed
their required CS courses without taking our course. Specifically, we will analyze the impact
of our course on students’ comprehension, explanations, and productivity on the tasks within
a “Skill Demonstration” that we design in which students must complete a small modification
to a large code base. By the end of our work, we will produce a full curriculum design and a
set of teaching approaches to improve students” ability to comprehend a large code base upon
graduating from an undergraduate CS program. We aim for our work to contribute to a more
diverse and productive set of CS graduates who will be immediate contributors to the country’s
workforce.

2 Background

2.1 Theoretical Frameworks

A Program Comprehension Theory: The Block Model
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Theories of program comprehension describe the process of comprehension as a “top-down’
process guided by hypotheses about the code [7], a “bottom-up” process in which lines or blocks
of code are grouped into abstractions [41], or an “as-needed” process where programmers use
various strategies based on the task at hand [33]. Though many such program comprehension
theories exist, we will focus on the Block Model presented by Schulte. The Block Model synthesizes
elements of well-established program comprehension theories [47] and was specifically designed
to support research and teaching of program comprehension. The Block Model, depicted in Table 1
consists of 12 “blocks” that each represent one “aspect of the understanding process”(i.e., one
step of the program comprehension process and one learning goal in a course) [46]. The 12
blocks are arranged across three dimensions—Program Text, Program Execution, and Program
Function. Each of these three dimensions are a different aspect of the program to understand
(the Text pertains to the written programming language, the Execution refers to the order and
flow of the program, and Function refers to the meaning of the code). Each dimension includes a
hierarchy of elements—Atoms (the smallest level), Blocks, Relations, and Macro Structure (the
largest level)—that covers a different comprehension level of the program.

Importantly, the Block Model can apply to either students comprehending a single program
text (a micro-sequence) or an instructor designing a course that covers various blocks (a macro-
sequence). Schulte notes that when planning programming courses, instructors may vary the
sequence in which they introduce the blocks and may not need to cover all 12 blocks in a
course [46]. For example, one sequencing option is to start teaching the Atoms of the Program
Text dimension and build towards the Macro Structure of the Program Function in the top
right. Alternatively, instructors could start at the Program Function dimension by introducing
common code constructs (i.e., an accumulator pattern) and their purposes before explaining
the language elements and execution of those constructs. Despite the flexibility afforded to
instructors in sequencing the blocks, Schulte notes that educators must take care to teach students
to comprehend both the Structure and Function of a program (rather than comprehending the
Structure without understanding the purpose of the program) [46].

Many of the papers that cite Schulte’s Block Model tend to focus on shorter, novice-level
programs [3, 19, 22, 24, 26]. We will use similar approaches to these prior works that evaluated
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the Block Model, but will focus our analysis to the context of large code bases. We aim to evaluate
and potentially extend the model to explain the comprehension process for large code bases.
Schulte calls for further research into 1) code reading and comprehension strategies, which he
writes are “neglected topics” in our curricula, and 2) “code purpose” questions that ask students
to explain and summarize the function of code. We will map specific lecture topics and program
comprehension strategies to blocks from the Block Model. By the end of our work, we aim to
contribute to a broader theoretical understanding of students” program comprehension strategies
in large code bases.

Cognitive Apprenticeship

Program comprehension is a process [7, 20, 46]. In fact, many works regarding program compre-
hension compare the processes that experts use to the processes novices use [45, 64]. Fortunately,
the central tenet of the Cognitive Apprenticeship (CA) learning theory is for an expert to “make
their thinking visible” to learners to facilitate the transfer of implicit processes and expertise [9].
Specifically, the theory enumerates 6 teaching methods—modeling, scaffolding, coaching, re-
flection, articulation, and exploration—to help learners observe, practice, refine, and master
the strategies needed to complete a task [9]. CA has been empirically evaluated across many
reasoning-based fields, such as engineering, writing, and nursing [12]. The PI of this proposal
has used CA methods extensively in the past while working to evaluate live coding—a modeling
method—on students’ code writing process. Based on this prior experience, the PI conducted a
literature review that synthesizes the use of CA approaches within computing education research
that appears in the SIGCSE 2024 Technical Symposium [48]. The literature review reveals a strong
emphasis on modeling, scaffolding, and coaching methods but an under-emphasis on reflection,
articulation, and exploration methods. However, the review uncovered several benefits of Cogni-
tive Apprenticeship methods, such as improved student enthusiasm for computing [25, 30, 57],
retention in computing courses [2, 11, 27, 28], and higher pass rates [14, 61]. Several works also
found that Cognitive Apprenticeship methods helped instructors manage a larger course size by
improving students’ self reliance, leading to less help requests [15, 38, 58].



Our proposed work will draw upon the PI's experience and knowledge of CA teaching methods
and will apply such methods for program comprehension in a large code base. For example, we
will leverage the modeling method to demonstrate an instructor’s approach to understanding part
of the code base, the articulation method by asking students to use code explanations as a learning
exercise, and the exploration method by assigning an open-ended task in which students must
draw upon all the techniques they’ve learned to complete a task on their own. By the end of our
work, we aim to associate teaching methods to learning outcomes and evaluate the effectiveness
of those methods on students’” program comprehension abilities in a large code base.

2.2 Ineffective Program Comprehension Strategies in Large Code Bases

This section discusses prior work to identify ineffective program comprehension strategies that
developers use in large code bases. Our work will replicate some of these studies on a student
population, draw connections between comprehension strategies and the Block Model, and
explore reasons that students’ rely on such techniques. Eventually, we will use these prior works,
combined with our own findings, to develop teaching approaches to reduce students’ reliance on
such ineffective strategies.

Ineffective Behavior 1: Thrashing

Sharafi et al. conducted an eye-tracking study of 36 students completing realistic tasks related to
maintenance and debugging in a large code base [53]. The authors discovered that a significant
predictor of a student unsuccessfully completing the task is thrashing—the process of excessively
switching between code elements [53]. Unsuccessful students displayed this thrashing behavior
35% more than successful students, leading to the authors recommending educational interven-
tions to explicitly improve students’ code navigation strategies [53]. This work largely confirmed
the findings of Robillard et al., who examined the code investigation strategies of software devel-
opers and found that ineffective developers resorted to techniques such as “code-skimming” and
scrolling in an effort to stumble upon the relevant piece of code [45].

Ineffective Behavior 2: Poor IDE Usage

Ineffective IDE (Integrated Development Environment) usage can cause developers to waste a
significant amount of their time. Minelli et al. used an instrumented IDE to analyze professional
developers’ interactions with an IDE [37]. Though the study included several serious threats to
validity, including half the data coming from a single developer, the authors found that nearly 17%
of developers’ time was spent fiddling with IDE features [37]. Similarly, an industry-focused study
by Beller et al. revealed that software professionals demonstrated low usage of the IDE-based
debugger—only one-third of developers used the debugger, amounting to just 13% of their actual
development time (lower than previous estimates of nearly 50% use) [6]. The authors found that
knowledge of how to use the debugger was surprisingly shallow, with developers noting that
they had never received formal education on how to use the debugger or had learned from a
senior developer on the job [6]. The authors include a specific recommendation for CS curricula in
universities to teach students how to use the debugger.

2.3 The Value of Program Comprehension

We have chosen to focus on program comprehension in a large code base due to the impact of
comprehension on various factors, which we will describe in this section.



Code Writing

Early work by Von Mayrhauser and Vans on the impact of program comprehension on software
maintenance showed that a strong understanding of the source code is a prerequisite to make
correct, high-quality code modifications [62]. Similarly, Hoadley et al. showed that developers
with stronger comprehension of the code were more likely to reuse methods when applicable
[21]. These works, along with others that study how novice programmers read and write small
programs [32, 34], consistently show a link between comprehension and ability to correctly write
code. Therefore, we posit that improving students” program comprehension skills should have a
downstream effect on students” ability to correctly modify large, existing code bases.

Explanations

Explanations of code, whether written explanations in documentation or verbal explanations
to a colleague or classmate, are a by-product of program comprehension [16, 55]. In fact, one
avenue of program comprehension research seeks to evaluate developers” summarizations of code
as a means to assess developer’s program comprehension skill [16]. Given prior work on the
academia-industry gap identifying communication as a consistent weakness of new developers
[42], we argue that improved program comprehension skills may help new developers with
technical communication and documentation generation.

Productivity

Studies have placed the amount of time spent navigating a large system to be 35% of a developers’
time [29] and the time spent understanding the relevant source code to be between 58% and
70% [37, 65]. Xia et al. found that more-experienced developers spend less time on program
comprehension activities than less-experienced developers, indicating the efficiency with which
experienced developers go about understanding a code base [65]. Given the time-consuming nature
of the program comprehension process, we contend that improving students” comprehension
strategies and skills can enable more productive workflows and reduce developer frustration.

2.4 Our Preliminary Work to Impart Strategies for Working with Large Code Bases

The PI of this proposal has already made progress towards understanding and imparting students’
program comprehension strategies in large code bases [52]. In the Spring 2023 quarter, the PI
designed and taught an initial version of a new course called “Working with Large Code Bases”
that aims to teach students program comprehension and maintenance strategies for large code
bases. An experience report titled “Working with Large Code Bases: A Cognitive Apprenticeship
Approach to Teaching Software Engineering” about this course will appear in the SIGCSE 2024
Technical Symposium [52]. The experience report describes the theoretical motivation, lecture
activities, and programming projects in the course. The course covers code comprehension
techniques for large code bases—code navigation, using the IDE-based debugger, diagramming,
reading unit tests, and more—and project management techniques—Git workflow, documentation
tips, and task management. Two of the main contributions of the experience report about the
course include 1) introducing teaching approaches to explicitly teach comprehension strategies
in a large code base and 2) a course design that could be managed by one instructor and two
graduate teaching assistants (TAs) for a course of 50 students (previous work described much
lower ratios of roughly 1 TA for every 6 students [56]). Importantly, student feedback during our



course shows a growing level of students’ self-efficacy in working with large code bases, which
may have downstream impacts on students” persistence and retention in computing [52].

The PI has also received a $50,000 grant from our university to support 1) the creation of an free,
online, interactive textbook to accompany the course and 2) the redesign of the course material for
the 2023-2024 academic year. We eventually aim for the textbook to serve as a stand-alone learning
resource for anyone who wishes to improve their ability to comprehend a large code base. The
course and textbook, which have been planned and developed over a full academic year, offers a
strong starting point to study how students” approach the program comprehension process.

3 Our Proposal

The primary goal of our proposal is to develop and evaluate teaching methods to address students’
struggles to comprehend large code bases. We aim to accomplish this goal in three phases

* Phase 1: Identifying the struggles students encounter when comprehending a large code
base.

* Phase 2: Designing and scaling a theory-based and research-based curriculum to address
the struggles we find.

¢ Phase 3: Assessing the impact of the designed curriculum on students” ability to accurately
comprehend, explain, and modify a part of a large code base.

3.1 Phase 1: Identifying Student Struggles while Comprehending a Large Code Base
Motivation

Since the Block Model applies to students” comprehension strategies for a specific task and the
sequencing of the topics in a course, a key motivation of Phase 1 is to 1) identify the struggles
students encounter while comprehending a large code base and 2) connect those struggles to
specific blocks in the Block Model. By doing so, we hope to motivate specific teaching methods to
address the areas in which students struggle. As mentioned, prior work has revealed the struggles
that new developers experience in their first software engineering job. These works, such as
the studies by Craig et al., Radermacher et al., and Begel and Simon involve semi-structured
interviews and anecdotes from professional developers [5, 10, 43]. However, our motivation
for Phase 1 is to gain a deeper understanding of comprehension-related struggles that students
face using observations of students” programming processes and statements from stimulated recall
interviews. Using these in-depth, qualitative methods, we will identify the strategies that students
use and the struggles students face during the program comprehension process.

Research Questions

¢ What struggles in the program comprehension process do students experience when under-
standing and modifying part of a large code base?

¢ In terms of the dimensions and hierarchy of the Block Model, how do students approach
the task of understanding and modifying part of a large code base?

Methods

In Phase 1, we will use qualitative analyses to understand the variety of struggles students
experience while comprehending large code bases. First, we will observe students completing



a “Skill Demonstration” in which they work to understand and modify a part of a large code
base. A “Skill Demonstration” is a type of assessment used in our CS department in which
students complete a task on their own and submit artifacts at various checkpoints to demonstrate
completion of subtasks. For example, one Skill Demonstration may ask students to set up a
development environment for a specific code base, which could include subtasks such as cloning
a Github repository, installing dependencies, configuring the build settings, and building the
code base. At each of these subtasks, students submit a required file, filepath, screenshot, etc.
to show that they have correctly completed the subtask. We have already created a “pilot” Skill
Demonstration in which students must find and modify a part of the IDLE code base based on
our initial offering of the “Working with Large Code Bases” course. In this Skill Demonstration,
students must locate and modify the Go-to-Line feature (an existing feature in IDLE that allows
users to type in a line number to move the cursor to) in the IDLE code base according to
requirements that we have specified. The subtasks in this Skill Demonstration include 1) locating
the code for the feature within the code base, 2) understanding the relevant code in the feature
to decide on the necessary changes, 3) modifying the code to satisfy requirements, 4) verifying
the changes by running the program, and 5) writing unit tests for the changes. When assigning
this task to students in the preliminary version of the course, the most time-consuming and
difficult step was locating the code for the feature, which will allow us to observe the variety of
comprehension strategies that students may use.

We aim to recruit 30 students to complete a two-hour Skill Demonstration. We will motivate
students by informing them that they will earn money for each subtask they correctly complete,
though we will give the complete amount to all students at the end of the Skill Demonstration. A
similar approach to condition the monetary award based on correct completion, but to ultimately
reward students with the full amount, was also used by Ko et al. in their study of code navigation
strategies [29]. The activity will be framed as an opportunity for students to 1) gain experience
working on a large code base that may help with their resume and project experience and 2) earn
money for completing a task for research purposes. Students will be recruited via classroom
announcements and emails sent to fourth-year undergraduates. We will complete these Skill
Demonstrations over several months to allow for multiple rounds of recruitment and flexibility for
scheduling with students. We have already conducted a pilot Skill Demonstration with 5 students
without offering the monetary compensation, so we are optimistic that we can recruit enough
undergraduates for our study.

We will analyze students” performance on the Skill Demonstration using the Block Model
to guide our analysis. Prior to the Skill Demonstration, we will ask students to complete a
survey about internship experience, past experiences with large code bases, and comfort with
the Python language to understand their initial knowledge base (which Schulte notes is under-
examined in program comprehension research [46]). During the Skill Demonstration, we will
record students’ screens as they complete the activity to manually detect their code navigation and
comprehension strategies, similar to the methods of prior works [29]. The Skill Demonstration
will include comprehension questions to assess their understanding of the program text, structure,
and function per the Block Model [46]. For example, one question may ask students to identify the
regions of interest (Program Text: Blocks), one may ask students to list out the sequence of method
calls (Program Execution: Relations), and one may ask students to explain the function of a specific
statement (Program Function: Atoms). Together, our observations and students’ responses to the
Skill Demonstration questions will help us understand students” code comprehension strategies
and, importantly, the struggles students face in terms of the Block Model.

Following the Skill Demonstrations, we would like to gather more in-depth data on students’
comprehension strategies in large code bases to make stronger connections to the Block Model.



Therefore, we will conduct video-stimulated recall interviews [40] in which we show students
recordings of their work and ask students to explain their thought process and reasoning during
that part of the Skill Demonstration. Similar to past theory-driven works related to program
comprehension in small programs [7, 33, 41], we aim to use our observations of student processes
and quotes from students to improve our understanding of what strategies students use and why
they attempt those strategies when comprehending large code bases.

3.2 Phase 2: Designing and Scaling a Theory-Based Curriculum to Address Student
Struggles

Motivation

Much of the prior work we have introduced in this proposal has only identified struggles of new
developers. However, given the PI's background and prior work in evaluating teaching approaches
for computing education, we aim to design a course to address the struggles we identify in Phase
1. We will leverage Cognitive Apprenticeship theory, which offers an instructional model for
facilitating the transfer of expert strategies from instructor to learner. Our literature review about
Cognitive Apprenticeship teaching methods in computing education revealed key benefits of
such methods, such as improved student persistence in computing, improved student ability to
complete programming tasks, and improved ability for instructors to manage a large class size
[48]. We aim to design a course that uses Cognitive Apprenticeship teaching methods, such as
modeling, scaffolding, articulation, and exploration, to realize these benefits.

Another key motivation is to accommodate at least 300 students in the course. Previous works
that describe project-based, software engineering courses rarely report on the ability to scale up
the course. The few works that do discuss logistics related to accommodating more students
either have a very low student-TA ratio (Tafliovich et al.: 5-6 students per TA [56]) or leverage
industry connections to mentor students ([1, 18]). These options are not necessarily available
to an instructor when budget constraints limit the number of TAs per course or when industry
connections are not present. Therefore, the goal of this phase is not only to design a theory-driven
and evidence-based course curriculum but also to accommodate more students in the course.

Research Questions

¢ Based on students’ perspectives, which mappings exist between various code comprehension
techniques (i.e., the IDE-based debugger, code navigation, etc) and “blocks” in the Block
Model (i.e., Relations in Program Execution, Atoms of Program Text, etc)?

Methods

The main considerations for Phase 2 are the content of course topics to teach (i.e., what will be
taught) and the techniques to manage a large class size (i.e., how to accommodate more students).

To decide the content of course topics, we will identify mappings between blocks in the Block
Model and comprehension techniques that we teach. We will use Version 1 of our course (to
be taught in Spring 2025) to ask students to reflect on the usefulness of code comprehension
techniques they have used, which will help us create these mappings. Our preliminary version of
the course already elucidated several such mappings. For example, students found the IDE-based
debugger helpful to follow the order of method calls, which maps to the Relations and Blocks
aspects of the Program Execution dimension in the Block Model [52]. Similarly, code navigation
shortcuts (such as using Find All References or Go to Definition) map to the Relations aspect



of Program Text since these commands can help understand references between blocks. Based
on these mappings, we will design teaching approaches to impart these code comprehension
techniques. Notably, we may identify struggles that are not directly mapped to the Block Model
due to our context being large code bases (rather than introductory-level programs). In these
cases, we will aim to extend the Block Model to explain the comprehension process in a large
code base and will still design the course to capture these struggles.

Using these mappings, we will design Cognitive Apprenticeship-based lecture activities to
impart code comprehension strategies to students. For example, we will likely begin with a
modeling step in which an instructor demonstrates the strategy to students, a scaffolding and
coaching step in which students use the strategy under instructor supervision during an in-lecture
activity, and an articulation step in which students describe how they used the strategy and its
usefulness for a task. Finally, we aim to include an exploration phase for students to use the
strategy in an open-ended task after the lecture. We aim for these activities to promote active
learning and to incorporate authentic tasks for students to complete based on our findings in our
Cognitive Apprenticeship literature review [48].

In this phase, we will also explore and evaluate several techniques that aim to accommodate a
larger class size each iteration of the course. One avenue of exploration will be to focus on students’
independent help-seeking techniques to limit students” help requests to instructors. Our first
iteration of the course allowed students to use LLM tools such as ChatGPT and Github Copilot.
Student feedback showed that students’ felt these tools were extremely useful for overcoming
obstacles during projects. We aim to explore student perspectives and the pedagogical impacts,
in terms of student learning and managing enrollment growth, of teaching students effective
techniques for interacting with LLMs for working with large code bases. Another potential
technique we may explore are peer-code reviews in which students provide an initial code review
to each other to reduce the time course staff need to spend on code reviews. The goal of exploring
these techniques is to help instructors of project-based, software engineering courses implement
such techniques to accommodate more students in their courses.

3.3 Phase 3: Assessing the Impact of our Curriculum on Student Skills
Motivation

While we will develop and administer a course to impart effective comprehension strategies, the
course will revolve around a single code base. Therefore, our intervention begs the questions of
whether students who took our course can transfer the skills we taught to a new code base. As a
result, we need to compare students that have completed our course to students who will graduate
without completing our course to understand the effectiveness of our course in preparing students
for working on a large, existing code base. This phase is crucial for the generalizability of our
results. Since we aim to disseminate our course materials, teaching methods, and course policies
to the broader computing education community, we should be able to identify learning outcomes
of the course related to students’ ability to comprehend, modify, and explain part of a large code
base.

Research Questions

¢ How does usage of program comprehension strategies differ between students who took
our course but did not complete an internship, students who did not take our course
but completed an internship, and those who neither took our course nor completed an



internship?
¢ How does performance on code modification tasks, Explain-in-Plain-English (EiPE) ques-
tions, and comprehension questions related to a large code base differ between those groups?

Methods

Phase 3 will evaluate the impact of our curriculum on students’ ability to comprehend, explain,
and modify parts of a large code base. Similar to Phase 1, we will conduct another screen-recorded
Skill Demonstration. In this phase, however, the Skill Demonstration will occur with all students
in our course (as a final assessment) and with fourth-year undergraduates who did not complete
our course. We will likely have at least 100 students who complete the course. As a result, we
hope to recruit at least 50 participants that did not complete our course. If our sample size is large
enough, we hope to have one group of students who did not take our course nor complete an
internship and another group who also did not take our course but has internship experience.
The Skill Demonstration will be conducted on a different code base than the IDLE code base so
that students from our course are not at an advantage over other students and students will be
instructed to find and modify an existing part of the code base. The code base should be written
in Java to further evaluate the generalizability of our course on students” program comprehension
strategies. During the Skill Demonstration, we will include comprehension and EiPE questions
that cover various blocks of the Block Model. Just like the Phase 1 Skill Demonstration, we will
ask students a series of questions to understand each students” knowledge base (such as students’
experience with large code bases, with Java, and in internships).

The analysis of the Phase 3 Skill Demonstration will be very similar to the analysis of the
Phase 1 Skill Demonstration. For this phase, however, we will have one group of students
that includes students who completed our course and one group of students who did not. We
will use two-sample t-tests (or ANOVA tests if we have more than 2 groups) to compare the
performance of the groups. We will manually analyze screen recordings from the Skill Demo
to report on the variety and frequency of code comprehension strategies used by both groups.
Further, we will evaluate the strength of code explanations using a rubric that we will develop
for the EiPE questions. Finally, we will count the number of subtasks completed and the rate
at which those were completed. The results from this phase will help us determine the impact
of our Cognitive Apprenticeship approach on students” program comprehension strategies and
comprehension-adjacent skills such as code explanations and correctness of code modifications.

4 Evaluation

We will update our external evaluator (EE)—Chris Hundhausen—after each phase. Dr. Hund-
hausen has extensive experience in software engineering education and has recently received
an NSF IUSE grant (#1915198) related to teaching skills such as teamwork and reflection while
working on “brownfield assignments,” which are large, existing code bases. We believe that
our proposed work to improve the technical skill of code comprehension in large code bases
complements Dr. Hundhausen’s existing proposal to promote the soft skills of working in a large
code base. We will meet with Dr. Hundhausen to discuss ideas for conducting our studies and for
understanding the results we obtain.



Evaluating the Skill Demonstration

We will take care to evaluate the two Skill Demonstrations (one in Phase 1 and one in Phase 3) we
create. For each of these Skill Demonstrations, we will conduct an initial “pilot” test to determine
if the instructions are clear and that the questions measure the skills that we intend to assess. We
will consult with our EE on the design of the Skill Demonstration and may reach out to industry
contacts (who have given guest lectures for our course) for feedback on the subtasks to include in
the Skill Demonstrations. These industry contacts have years of experience as software developers
and already understand the goals of our course given our prior collaboration.

Evaluating our Comparative Analyses

Both PI Soosai Raj and co-PI Griswold have experience conducting controlled experiments,
including multiple course-long experiments to evaluate the impact of live coding on students’
comprehension skills, programming processes, and lecture engagement [44, 49, 51]. Co-PI
Griswold also has conducted qualitative studies on instructor perspectives of the academia-
industry gap [59, 60]. For our current work, we will rely on similar methods that PI Soosai Raj and
co-PI Griswold have used previously, such as controlling for various factors that impact students’
ability to comprehend a large code base. For example, we will ensure that we collect data about
students’ internship experience, prior programming experience before college, experience with
certain programming languages, GPA, and other characteristics we deem relevant. We will control
for these factors the statistical tests we apply.

Theoretical Evaluation

Because the Block Model and Cognitive Apprenticeship learning theory play a major role in
motivating each phase and the methods we employ, we will explain our results in terms of these
theories. In this sense, the learning and teaching theories will help validate our findings. For
example, in our prior work to evaluate live—a modeling method of Cognitive Apprenticeship—
we did not observe an improvement to students” programming processes (measure in terms of
adherence to incremental development and debugging techniques). However, we were able to
explain our results using Cognitive Apprenticeship itself, since our intervention involved only a
modeling method (live coding) without appropriate scaffolding, coaching, or reflection methods
for students to practice these programming processes. We will make similar connections to theory
in our proposed work, which can provide a theoretical basis for our findings.

5 Disseminating Results

Published Work

We will disseminate our findings via research papers and experience reports at premier computing
education research venues such as the SIGCSE TS, ITiCSE, and ICER. The list of proposed papers
below represents the “core” studies and reports we aim to create:

Student Struggles in Program Comprehension on Large Code Bases (Research Paper)

A Skill Demonstration to Assess Students” Ability to Understand and Modify a Large Code
Base in Python (Experience Report)

Towards Mapping Code Comprehension Techniques to the Block Model (Research Paper)
A Revised Curriculum to Teach Working with Large Code Bases at Scale (Experience Report)



¢ An Empirical Evaluation of a Cognitive Apprenticeship-Based Course for Comprehending
Large Code Bases (Research Paper)

However, we note the potential for many other findings given the large amount of data we
plan to collect. For example, since we will be introducing students to LLM tools such as Cursor
[13] (an Al-first IDE that integrates features such as Github Copilot and ChatGPT), we plan to
collect data related to students” experiences and perceptions of using these tools for a large code
base. Our Skill Demonstrations might shed light on the value and frequency of internships, which
could also be a useful finding for our research community.

Pedagogical Artifacts

We will also produce several pedagogical artifacts to assist instructors who wish to teach a similar
course at their own institution:

¢ A course website designed with recordings of lectures, assignment descriptions, a recom-
mended syllabus, and other relevant course material.

* A free, online, interactive textbook on Stepik so that anyone can access the course material.

¢ A Skill Demonstration with instructions for implementation for instructors to assess their
students’ ability to comprehend a large code base.

6 Sustainability

This project will be sustained by graduate and undergraduate students at UC San Diego. A
significant portion of the work will be completed by Anshul Shah, a third-year PhD student
focusing on using Cognitive Apprenticeship techniques to improve students” programming
processes (including code writing and code comprehension). Anshul was the lead student on
the work to evaluate live coding. We also have a sizable number of undergraduate and master’s
students that are interested in this work. For example, two master’s students (Jerry You and
Thanh Tong) were interested in our first offering of the course and played a large role in its
implementation. Jerry and Thanh are co-authors on the experience report of our initial course
offering. In fact, several former students of our course have already expressed interest in being
future teaching assistants for the course due to their positive experiences in the class.

We also plan to sustain this project by sharing our findings at top CS Education conference
venues through research papers, experience reports, and workshops (as mentioned in Section
5). One explicit goal from our dissemination is to help instructors at other institutions offer this
course using the materials we have produced. Because of co-PI Griswold’s prior work in which
CS faculty around the world were surveyed about their perspectives on the academia-industry
gap, we are aware of the obstacles these faculty have reported that make industry preparation
difficult [60]. These obstacles include lack of time to create materials and large class sizes, among
others. Fortunately, our goals are to 1) create ready-to-use course materials for instructors and 2)
accommodate hundreds of students in our course. Therefore, we are optimistic that our work can
improve the sustainability of this course at other institutions.

7 Intellectual Merit

Our research community has repeatedly called for interventions to impart strategies of working
with large code bases, from Tony Clear’s opinion piece in 2005 [8] to recent studies that investigated



the academia-industry gap [10, 43]. Given the lack of work to address the academia-industry gap,
as opposed to understanding perspectives and experiences related to the gap, our work will make
important progress to narrow the gap pedagogically. Program comprehension is a significant
part of a developer’s workflow that impacts productivity, ability to debug, and communication.
These far-ranging impacts warrant the significant research undertaking that we have proposed in
order to prepare our students for industry work. Further, by relating our results in each phase
to the Block Model, we aim to create a theoretical basis for our recommendations for teaching
code comprehension in large code bases. The Block Model has received much attention since its
introduction, though the work to evaluate the model has focused on small programs. Our work
will build upon this existing body of work by extending these prior analyses to the context of
large code bases. Through this line of work, we may encourage future researchers and educators
to emphasize the important skill of program comprehension in large code bases.

8 Broader Impacts

The broader impacts of our work are two-fold: first, there are direct benefits to individuals
from currently underrepresented groups and second, there are benefits to our future workforce.
First, computing suffers from low retention rates among underrepresented groups, including
women and BLNPI+ students. Fortunately, prior work, including a literature review on Cognitive
Apprenticeship methods from the PI [48], has shown the positive impact of authentic and active
learning environments on students’ persistence in computing [27, 30]. Our preliminary experience
teaching the course already showed students reporting an improved confidence throughout the
term. Further, differences among incoming university students in terms of prior programming
experience, which is linked to gender [35, 63] and socioeconomic status [36], likely impacts
students’ ability to obtain summer internships and thus, employment. Our research contributions
and pedagogical artifacts will help level this playing field by providing an authentic software
engineering experience for students who haven’t obtained internship experience. Second, there is a
clear impact on workforce readiness and industry productivity from our work. A large motivation
for this proposal comes from prior works that describe the frustrations and confusions of new
graduates in software engineering [5, 10, 43]. Since our work will aim to impart relevant and
high-impact skills for developers, such as code comprehension and code management techniques,
we expect our graduates to perform more productively in the workforce. Ultimately, we aim for
our work to contribute to a more diverse and effective software engineering workforce.

9 Key Personnel

Our project team includes PI Adalbert Gerald Soosai Raj (UC San Diego), co-PI Bill Griswold (UC
San Diego), and EE Chris Hundhausen (Oregon State University).

PI Soosai Raj has experience conducting controlled experiments to evaluate the impact of live
coding (see Section 10 for more details), has 3 years of relevant software engineering experience in
industry, and has designed and administered the initial offering of the Working with Large Code
Bases course. His work with live coding included three quarter-long experiments to compare
live-coding examples to alternative pedagogical techniques to understand the impact of modeling
on students’ programming processes. Part of the live coding work included developing a metric for
incremental development—an effective software development technique to improve developer’s
productivity and mitigate errors. PI Soosai Raj’s industry experience has helped him identify the



shortcomings in our current ability to teach students how to work with large code bases—a key
motivation for him to conduct this research.

Co-PI Bill Griswold has extensive experience in software engineering research and computing
education research—a combination of experiences that is crucial for our proposed work. Co-
PI Griswold was a pioneer in code refactoring for software maintenance [17]. His experience
in software engineering research—specifically in software maintenance and evolution—will be
vital for the experimental design and analysis of our results related to program comprehension.
Co-PI Griswold has also been involved in software engineering education research, including
work to evaluate live coding, to identify at-risk students, and to understand perspectives of the
academia-industry gap [60].

EE Chris Hundhausen also conducts research into software engineering education, including
NSF-funded work to explore brownfield programming assignments (NSF DUE Award #1915196).
He has authored the influential “IDE-based Learning Analytics for Computing Education,” which
even mentions using Cognitive Apprenticeship methods such as scaffolding and articulation
within IDEs to support student learning.

10 Results of Prior NSF Support

PI Soosai Raj and co-PI Griswold worked on the project “Determining the Effectiveness of Live
Coding on Student Learning in Introductory Programming” (IUSE #2044473). The goal of this
project was to determine the impact of live coding (a modeling method of Cognitive Apprentice-
ship) on students” programming processes (such as incremental development, debugging, and
testing), code comprehension skills, and lecture engagement in introductory programming courses.
The work succeeded in 1) developing a metric called the Measure of Incremental Development
to quantify a students” adherence to incremental development [50], 2) comparing a remote, live-
coding pedagogy to a remote, static-code pedagogy [49], 3) comparing an in-person, live-coding
pedagogy to an in-person, static-code pedagogy [51], and 4) comparing a live-coding pedagogy to
an active live-coding pedagogy that engaged the scaffolding and articulation methods of Cognitive
Apprenticeship (submission forthcoming). This prior work has been vital to motivating our
current proposal. Not only have we gained a deeper understanding of applying Cognitive Ap-
prenticeship methods in courses, but we have also realized the difficulty in expecting introductory
programming students to adhere to effective incremental development and debugging practices.
In a larger code base, with more time-consuming tasks, these programming processes become
more important to reduce developer frustration and improve productivity. This realization was a
motivating factor in the inception of our current proposed work.

Another key project that co-PI Griswold worked on was “Identifying and Aiding At-Risk
Students in Computing” (DUE #1712508). Co-PI Griswold conducted work to understand faculty
views on the academia-industry gap [59, 60]. Importantly, these works showed a dominant
perspective from 57% of computing faculty around the world that a principal goal of university CS
education is to prepare students for industry [60], which further motivated our current proposed
work. We aim to develop a curriculum to prepare students for industry while also addressing the
barriers that instructors have identified, such as large class sizes and the time required to develop
course materials [60].



11 Timeline of Work, Outcomes, and Dissemination

Fall 2024 -
Winter 2025

Conduct and analyze Skill Demos and interviews to identify
strategies and struggles while understanding large code bases.

Spring 2025

Teach Version 1 of the course to 100 students.

Continue analyzing data from Skill Demos and interviews.
Experience Report about A Skill Demonstration to Assess Stu-
dents’ Ability to Comprehend a Large Code Base

Summer 2025 -
Winter 2026

Analyze student feedback and artifacts from course

Update course content, textbook, and policies

Research Paper about Student Struggles while Modifying a Large
Code Base

Spring 2026

Teach Version 2 of the course to 150-200 students

Conduct final exam/Skill Demonstration for Version 2 of our
course to assess ability to comprehend a large code base

Begin conducting the same Skill Demo for students who did not
take Version 1 or Version 2 of our course.

Research Paper about Mapping Code Comprehension Techniques
to the Block Model

Summer 2026 -
Winter 2027

Continue Skill Demos for students who did not take V1 or V2 of
our course if needed

Analyze data from the Skill Demos

Experience Report about Scaling a Software Engineering Course
about Working with Large Code Bases

Spring 2027

Teach Version 3 (the final version) of our course to 300 students
Research Paper about Evaluating a Cognitive Apprenticeship-
Based course to Impart Strategies for Comprehending Large Code
Bases
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